Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 279
Filtrar
1.
Biomed Pharmacother ; 174: 116573, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38613996

RESUMO

Triple-negative breast cancer (TNBC) is an aggressive subtype characterized by the absence of commonly targeted receptors. Unspecific chemotherapy is currently the main therapeutic option, with poor results. Another major challenge is the frequent appearance of brain metastasis (BM) associated with a significant decrease in patient overall survival. The treatment of BM is even more challenging due to the presence of the blood-brain barrier (BBB). Here, we present a dual-acting peptide (PepH3-vCPP2319) designed to tackle TNBC/BM, in which a TNBC-specific anticancer peptide (ACP) motif (vCPP2319) is joined to a BBB peptide shuttle (BBBpS) motif (PepH3). PepH3-vCPP2319 demonstrated selectivity and efficiency in eliminating TNBC both in monolayers (IC50≈5.0 µM) and in spheroids (IC50≈25.0 µM), with no stringent toxicity toward noncancerous cell lines and red blood cells (RBCs). PepH3-vCPP2319 was also able to cross the BBB in vitro and penetrate the brain in vivo, and was stable in serum with a half-life above 120 min. Tumor cell-peptide interaction is fast, with quick peptide internalization via clathrin-mediated endocytosis without membrane disruption. Upon internalization, the peptide is detected in the nucleus and the cytoplasm, indicating a multi-targeted mechanism of action that ultimately induces irreversible cell damage and apoptosis. In conclusion, we have designed a dual-acting peptide capable of brain penetration and TNBC cell elimination, thus expanding the drug arsenal to fight this BC subtype and its BM.

2.
FEBS Lett ; 598(7): 787-800, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38339834

RESUMO

HIV-1 antibodies targeting the carboxy-terminal area of the membrane-proximal external region (ctMPER) are close to exerting viral pan-neutralization. Here, we reconstituted the ctMPER epitope as the N-terminal extremity of the Env glycoprotein transmembrane domain helix and immobilized it onto biosensor-supported lipid bilayers. We assessed the binding mechanism of anti-MPER antibody 10E8 through Surface Plasmon Resonance, and found, through equilibrium and kinetic binding analyses as a function of bilayer thickness, peptide length, and paratope mutations, that 10E8 engages first with the epitope peptide (encounter), limited by ctMPER helix accessibility at the membrane surface, and then inserts into the lipid bilayer assisted by favorable Fab-membrane interactions (docking). This mechanistic information may help in devising new strategies to develop more efficient MPER-targeting vaccines.


Assuntos
HIV-1 , Bicamadas Lipídicas , Epitopos , HIV-1/genética , HIV-1/química , Anticorpos Neutralizantes , Peptídeos/química , Ressonância de Plasmônio de Superfície , Proteína gp41 do Envelope de HIV/genética , Proteína gp41 do Envelope de HIV/química
3.
Antimicrob Agents Chemother ; 68(3): e0112723, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38349159

RESUMO

The problems associated with the drugs currently used to treat leishmaniasis, including resistance, toxicity, and the high cost of some formulations, call for the urgent identification of new therapeutic agents with novel modes of action. The aggregated protein dye YAT2150 has been found to be a potent antileishmanial compound, with a half-maximal inhibitory concentration (IC50) of approximately 0.5 µM against promastigote and amastigote stages of Leishmania infantum. The encapsulation in liposomes of YAT2150 significantly improved its in vitro IC50 to 0.37 and 0.19 µM in promastigotes and amastigotes, respectively, and increased the half-maximal cytotoxic concentration in human umbilical vein endothelial cells to >50 µM. YAT2150 became strongly fluorescent when binding intracellular protein deposits in Leishmania cells. This fluorescence pattern aligns with the proposed mode of action of this drug in the malaria parasite Plasmodium falciparum, the inhibition of protein aggregation. In Leishmania major, YAT2150 rapidly reduced ATP levels, suggesting an alternative antileishmanial mechanism. To the best of our knowledge, this first-in-class compound is the only one described so far having significant activity against both Plasmodium and Leishmania, thus being a potential drug for the treatment of co-infections of both parasites.


Assuntos
Antiprotozoários , Leishmania infantum , Leishmaniose , Parasitos , Animais , Humanos , Células Endoteliais , Leishmaniose/tratamento farmacológico , Antiprotozoários/farmacologia , Antiprotozoários/uso terapêutico
4.
Nanomaterials (Basel) ; 13(24)2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38132988

RESUMO

In this paper we report an acid-modulated strategy for novel peptide microarray production on biosensor interfaces. We initially selected a controlled pore glass (CPG) as a support for solid-phase peptide synthesis (SPPS) to implement a chemistry that can be performed at the interface of multiple field effect transistor (FET) sensors, eventually to generate label-free peptide microarrays for protein screening. Our chemistry uses a temporary protection of the N-terminal amino function of each amino acid building block with a tert-butyloxycarbonyl (Boc) group that can be removed after each SPPS cycle, in combination with semi-permanent protection of the side chains of trifunctional amino acid residues. Such a protection scheme with a well-proven record of application in conventional, batchwise SPPS has been fine-tuned for optimal performance on CPG and, from there, translated to SPR chips that allow layer-by-layer monitoring of amino acid coupling. Our results validate this acid-modulated synthesis as a feasible approach for producing peptides in high yields and purity on flat glass surfaces, such as those in bio-FETs.

5.
Pharmaceutics ; 15(10)2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37896211

RESUMO

In recent decades, bioactive peptides have been gaining recognition in various biomedical areas, such as intracellular drug delivery (cell-penetrating peptides, CPPs) or anti-infective action (antimicrobial peptides, AMPs), closely associated to their distinct mode of interaction with biological membranes. Exploiting the interaction of membrane-active peptides with diverse targets (healthy, tumoral, bacterial or parasitic cell membranes) is opening encouraging prospects for peptides in therapeutics. However, ordinary peptides formed by L-amino acids are easily decomposed by proteases in biological fluids. One way to sidestep this limitation is to use topoisomers, namely versions of the peptide made up of D-amino acids in either canonic (enantio) or inverted (retroenantio) sequence. Rearranging peptide sequences in this fashion provides a certain degree of native structure mimicry that, in appropriate contexts, may deliver desirable biological activity while avoiding protease degradation. In this review, we will focus on recent accounts of membrane-active topoisomeric peptides with therapeutic applications as CPP drug delivery vectors, or as antimicrobial and anticancer candidates. We will also discuss the most common modes of interaction of these peptides with their membrane targets.

6.
ACS Infect Dis ; 9(10): 1889-1900, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37669146

RESUMO

The formation of biofilms is a common virulence factor that makes bacterial infections difficult to treat and a major human health problem. Biofilms are bacterial communities embedded in a self-produced matrix of extracellular polymeric substances (EPS). In this work, we show that vCPP2319, a polycationic peptide derived from the capsid protein of Torque teno douroucouli virus, is active against preformed Staphylococcus aureus biofilms produced by both a reference strain and a clinical strain isolated from a diabetic foot infection, mainly by the killing of biofilm-embedded bacteria. The direct effect of vCPP2319 on bacterial cells was imaged using atomic force and confocal laser scanning microscopy, showing that the peptide induces morphological changes in bacterial cells and membrane disruption. Importantly, vCPP2319 exhibits low toxicity toward human cells and high stability in human serum. Since vCPP2319 has a limited effect on the biofilm EPS matrix itself, we explored a combined effect with α-amylase (EC 3.2.1.1), an EPS matrix-degrading enzyme. In fact, α-amylase decreases the density of S. aureus biofilms by 2.5-fold. Nonetheless, quantitative analysis of bioimaging data shows that vCPP2319 partially restores biofilm compactness after digestion of the polysaccharides, probably due to electrostatic cross-bridging of the matrix nucleic acids, which explains why α-amylase fails to improve the antibacterial action of the peptide.


Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Humanos , Peptídeos Antimicrobianos , Biofilmes , Infecções Estafilocócicas/microbiologia , alfa-Amilases/farmacologia , alfa-Amilases/uso terapêutico
7.
Pharmaceutics ; 15(6)2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37376223

RESUMO

ß-defensins are one of the most abundant and studied families of antimicrobial peptides (AMPs). Because of their selective toxicity to bacterial membranes and a broad spectrum of microbicidal action, ß-defensins are regarded as potential therapeutic agents. This work focuses on a ß-defensin-like AMP from the spiny lobster Panulirus argus (hereafter referred to as panusin or PaD). This AMP is structurally related to mammalian defensins via the presence of an αß domain stabilized by disulfide bonds. Previous studies of PaD suggest that its C-terminus (Ct_PaD) contains the main structural determinants of antibacterial activity. To confirm this hypothesis, we made synthetic versions of PaD and Ct_PaD to determine the influence of the C-terminus on antimicrobial activity, cytotoxicity, proteolytic stability, and 3D structure. After successful solid-phase synthesis and folding, antibacterial assays of both peptides showed truncated Ct_PaD to be more active than native PaD, confirming the role of the C-terminus in activity and suggesting that cationic residues in that region enhance binding to negatively charged membranes. On the other hand, neither PaD nor Ct_PaD were hemolytic or cytotoxic in human cells. Proteolysis in human serum was also studied, showing high (>24 h) t1/2 values for PaD and lower but still considerable for Ct_PaD, indicating that the missing native disulfide bond in Ct_PaD alters protease resistance, albeit not decisively. NMR-2D experiments in water agree with the results obtained by circular dichroism (CD), where in SDS micelles, CD showed both peptides adopting an increasingly ordered structure in a hydrophobic environment, in tune with their ability to perturb bacterial membrane systems. In conclusion, while the ß-defensin features of PaD are confirmed as advantageous in terms of antimicrobial activity, toxicity, and protease stability, the results of the present work suggest that these same features are preserved, even enhanced, in the structurally simpler Ct_PaD, which must therefore be viewed as a valuable lead for the development of novel anti-infectives.

8.
Curr Issues Mol Biol ; 45(6): 4985-5004, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37367066

RESUMO

Tumour suppressor p53 plays a key role in the development of cancer and has therefore been widely studied in recent decades. While it is well known that p53 is biologically active as a tetramer, the tetramerisation mechanism is still not completely understood. p53 is mutated in nearly 50% of cancers, and mutations can alter the oligomeric state of the protein, having an impact on the biological function of the protein and on cell fate decisions. Here, we describe the effects of a number of representative cancer-related mutations on tetramerisation domain (TD) oligomerisation defining a peptide length that permits having a folded and structured domain, thus avoiding the effect of the flanking regions and the net charges at the N- and C-terminus. These peptides have been studied under different experimental conditions. We have applied a variety of techniques, including circular dichroism (CD), native mass spectrometry (MS) and high-field solution NMR. Native MS allows us to detect the native state of complexes maintaining the peptide complexes intact in the gas phase; the secondary and quaternary structures were analysed in solution by NMR, and the oligomeric forms were assigned by diffusion NMR experiments. A significant destabilising effect and a variable monomer population were observed for all the mutants studied.

9.
Insects ; 14(6)2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37367349

RESUMO

The spotted-wing drosophila (Drosophila suzukii) is a polyphagous pest that causes severe damage and economic losses to soft-skinned fruit production. Current control methods are dominated by inefficient cultural practices and broad-spectrum insecticides that, in addition to having toxic effects on non-target organisms, are becoming less effective due to acquired resistance. The increasing awareness of the real impact of insecticides on health and the environment has promoted the exploration of new insecticidal compounds, addressing novel molecular targets. This study explores the efficacy of two orally delivered spider venom peptides (SVPs), J-atracotoxin-Hv1c (Hv1c) and µ-theraphotoxin-Hhn2b (TRTX), to manage D. suzukii, through survival assays and the evaluation of gene expression associated with detoxification pathways. Treatment with TRTX at 111.5 µM for 48 h enhanced fly longevity compared with the control group. Gene expression analysis suggests that detoxification and stress-related mechanisms, such as expression of P450 proteins and apoptotic stimuli signaling, are triggered in D. suzukii flies in response to these treatments. Our results highlight the potential interest of SVPs to control this pest, shedding light on how to ultimately develop improved target-specific formulations.

10.
Pharmaceutics ; 15(2)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36839679

RESUMO

Infectious diseases caused by microbial pathogens (bacteria, virus, fungi, parasites) claim millions of deaths per year worldwide and have become a serious challenge to global human health in our century. Viral infections are particularly notable in this regard, not only because humankind is facing some of the deadliest viral pandemics in recent history, but also because the arsenal of drugs to combat the high levels of mutation, and hence the antigenic variability of (mostly RNA) viruses, is disturbingly scarce. Therefore, the search for new antivirals able to successfully fight infection with minimal or no adverse effects on the host is a pressing task. Traditionally, antiviral therapies have relied on relatively small-sized drugs acting as proteases, polymerases, integrase inhibitors, etc. In recent decades, novel approaches involving targeted delivery such as that achieved by peptide-drug conjugates (PDCs) have gained attention as alternative (pro)drugs for tackling viral diseases. Antiviral PDC therapeutics typically involve one or more small drug molecules conjugated to a cell-penetrating peptide (CPP) carrier either directly or through a linker. Such integration of two bioactive elements into a single molecular entity is primarily aimed at achieving improved bioavailability in conditions where conventional drugs are challenged, but may also turn up novel unexpected functionalities and applications. Advances in peptide medicinal chemistry have eased the way to antiviral PDCs, but challenges remain on the way to therapeutic success. In this paper, we review current antiviral CPP-drug conjugates (antiviral PDCs), with emphasis on the types of CPP and antiviral cargo. We integrate the conjugate and the chemical approaches most often applied to combine both entities. Additionally, we comment on various obstacles faced in the design of antiviral PDCs and on the future outlooks for this class of antiviral therapeutics.

11.
Commun Biol ; 5(1): 1265, 2022 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-36400835

RESUMO

Antibodies against the carboxy-terminal section of the membrane-proximal external region (C-MPER) of the HIV-1 envelope glycoprotein (Env) are considered as nearly pan-neutralizing. Development of vaccines capable of producing analogous broadly neutralizing antibodies requires deep understanding of the mechanism that underlies C-MPER recognition in membranes. Here, we use the archetypic 10E8 antibody and a variety of biophysical techniques including single-molecule approaches to study the molecular recognition of C-MPER in membrane mimetics. In contrast to the assumption that an interfacial MPER helix embodies the entire C-MPER epitope recognized by 10E8, our data indicate that transmembrane domain (TMD) residues contribute to binding affinity and specificity. Moreover, anchoring to membrane the helical C-MPER epitope through the TMD augments antibody binding affinity and relieves the effects exerted by the interfacial MPER helix on the mechanical stability of the lipid bilayer. These observations support that addition of TMD residues may result in more efficient and stable anti-MPER vaccines.


Assuntos
HIV-1 , HIV-1/química , Proteína gp41 do Envelope de HIV/química , Proteína gp41 do Envelope de HIV/metabolismo , Anticorpos Anti-HIV/química , Epitopos , Bicamadas Lipídicas/química
12.
Pharmaceutics ; 14(10)2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36297604

RESUMO

Antimicrobial peptides (AMPs) are widely distributed molecules secreted mostly by cells of the innate immune system to prevent bacterial proliferation at the site of infection. As with classic antibiotics, continued treatment with AMPs can create resistance in bacteria. However, whether AMPs can generate tolerance as an intermediate stage towards resistance is not known. Here, we show that the treatment of Escherichia coli with different AMPs induces tolerance by lag, particularly for those peptides that have internal targets. This tolerance can be detected as different morphological and physiological changes, which depend on the type of peptide molecule the bacterium has been exposed to. In addition, we show that AMP tolerance can also affect antibiotic treatment. The genomic sequencing of AMP-tolerant strains shows that different mutations alter membrane composition, DNA replication, and translation. Some of these mutations have also been observed in antibiotic-resistant strains, suggesting that AMP tolerance could be a relevant step in the development of antibiotic resistance. Monitoring AMP tolerance is relevant vis-á-vis the eventual therapeutic use of AMPs and because cross-tolerance might favor the emergence of resistance against conventional antibiotic treatments.

13.
Sci Rep ; 12(1): 16189, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-36202865

RESUMO

Individuals with complete cervical spinal cord injury suffer from a permanent paralysis of upper limbs which prevents them from achieving most of the activities of daily living. We developed a neuroprosthetic solution to restore hand motor function. Electrical stimulation of the radial and median nerves by means of two epineural electrodes enabled functional movements of paralyzed hands. We demonstrated in two participants with complete tetraplegia that selective stimulation of nerve fascicles by means of optimized spreading of the current over the active contacts of the multicontact epineural electrodes induced functional and powerful grasping movements which remained stable over the 28 days of implantation. We also showed that participants were able to trigger the activation of movements of their paralyzed limb using an intuitive interface controlled by voluntary actions and that they were able to perform useful functional movements such as holding a can and drinking through a straw.


Assuntos
Terapia por Estimulação Elétrica , Traumatismos da Medula Espinal , Atividades Cotidianas , Mãos/fisiologia , Humanos , Movimento/fisiologia , Quadriplegia/terapia , Traumatismos da Medula Espinal/complicações , Traumatismos da Medula Espinal/terapia , Extremidade Superior
14.
BMC Biol ; 20(1): 197, 2022 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-36271358

RESUMO

BACKGROUND: By 2016, signs of emergence of Plasmodium falciparum resistance to artemisinin and partner drugs were detected in the Greater Mekong Subregion. Recently, the independent evolution of artemisinin resistance has also been reported in Africa and South America. This alarming scenario calls for the urgent development of new antimalarials with novel modes of action. We investigated the interference with protein aggregation, which is potentially toxic for the cell and occurs abundantly in all Plasmodium stages, as a hitherto unexplored drug target in the pathogen. RESULTS: Attempts to exacerbate the P. falciparum proteome's propensity to aggregation by delivering endogenous aggregative peptides to in vitro cultures of this parasite did not significantly affect their growth. In contrast, protein aggregation inhibitors clearly reduced the pathogen's viability. One such compound, the bis(styrylpyridinium) salt YAT2150, exhibited potent antiplasmodial activity with an in vitro IC50 of 90 nM for chloroquine- and artemisinin-resistant lines, arresting asexual blood parasites at the trophozoite stage, as well as interfering with the development of both sexual and hepatic forms of Plasmodium. At its IC50, this compound is a powerful inhibitor of the aggregation of the model amyloid ß peptide fragment 1-40, and it reduces the amount of aggregated proteins in P. falciparum cultures, suggesting that the underlying antimalarial mechanism consists in a generalized impairment of proteostasis in the pathogen. YAT2150 has an easy, rapid, and inexpensive synthesis, and because it fluoresces when it accumulates in its main localization in the Plasmodium cytosol, it is a theranostic agent. CONCLUSIONS: Inhibiting protein aggregation in Plasmodium significantly reduces the parasite's viability in vitro. Since YAT2150 belongs to a novel structural class of antiplasmodials with a mode of action that potentially targets multiple gene products, rapid evolution of resistance to this drug is unlikely to occur, making it a promising compound for the post-artemisinin era.


Assuntos
Antimaláricos , Artemisininas , Malária Falciparum , Humanos , Antimaláricos/farmacologia , Plasmodium falciparum , Agregados Proteicos , Peptídeos beta-Amiloides , Proteoma , Resistência a Medicamentos , Artemisininas/farmacologia , Artemisininas/uso terapêutico , Malária Falciparum/parasitologia , Cloroquina/química , Cloroquina/farmacologia , Cloroquina/uso terapêutico
15.
Biomedicines ; 10(9)2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36140211

RESUMO

Ctn[15-34], the C-terminal section of crotalicidin (Ctn), a cathelicidin from a South American pit viper, is an antimicrobial and antitumoral peptide with remarkably longer stability in human serum than the parent Ctn. In this work, a set of topoisomers of both Ctn and Ctn[15-34], including the retro, enantio, and retroenantio versions, were synthesized and tested to investigate the structural requirements for activity. All topoisomers were as active as the cognate sequences against Gram-negative bacteria and tumor cells while slightly more toxic towards normal cells. More importantly, the enhanced serum stability of the D-amino-acid-containing versions suggests that such topoisomers must be preferentially considered as future antimicrobial and anticancer peptide leads.

16.
ACS Infect Dis ; 8(7): 1207-1217, 2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35731709

RESUMO

The recruitment of eosinophils into Leishmania lesions is frequently associated with a favorable evolution. A feasible effector for this process is eosinophil cationic protein (ECP, RNase 3), one of the main human eosinophil granule proteins, endowed with a broad spectrum of antimicrobial activity, including parasites. ECP was active on Leishmania promastigotes and axenic amastigotes (LC50's = 3 and 16 µM, respectively) but, in contrast to the irreversible membrane damage caused on bacteria and reproduced by its N-terminal peptides, it only induced a mild and transient plasma membrane destabilization on Leishmania donovani promastigotes. To assess the contribution of RNase activity to the overall leishmanicidal activity of ECP, parasites were challenged in parallel with a single-mutant version, ECP-H15A, devoid of RNase activity, that fully preserves the conformation and liposome permeabilization ability. ECP-H15A showed a similar uptake to ECP on promastigotes, but with higher LC50's (>25 µM) for both parasite stages. ECP-treated promastigotes showed a degraded RNA pattern, absent in ECP-H15A-treated samples. Moreover ECP, but not ECP-H15A, reduced more than 2-fold the parasite burden of infected macrophages. Altogether, our results suggest that ECP enters the Leishmania cytoplasm by an endocytic pathway, ultimately leading to RNA degradation as a key contribution to the leishmanicidal mechanism. Thus, ECP combines both membrane destabilization and enzymatic activities to effect parasite killing. Taken together, our data highlight the microbicidal versatility of ECP as an innate immunity component and support the development of cell-penetrating RNases as putative leishmanicidal agents.


Assuntos
Anti-Infecciosos , Leishmania donovani , Anti-Infecciosos/farmacologia , Proteína Catiônica de Eosinófilo/química , Proteína Catiônica de Eosinófilo/genética , Proteína Catiônica de Eosinófilo/metabolismo , Proteínas Granulares de Eosinófilos/farmacologia , Humanos , Ribonucleases/metabolismo , Ribonucleases/farmacologia
17.
Pharmaceutics ; 14(4)2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35456572

RESUMO

Viral disease outbreaks affect hundreds of millions of people worldwide and remain a serious threat to global health. The current SARS-CoV-2 pandemic and other recent geographically- confined viral outbreaks (severe acute respiratory syndrome (SARS), Ebola, dengue, zika and ever-recurring seasonal influenza), also with devastating tolls at sanitary and socio-economic levels, are sobering reminders in this respect. Among the respective pathogenic agents, Zika virus (ZIKV), transmitted by Aedes mosquito vectors and causing the eponymous fever, is particularly insidious in that infection during pregnancy results in complications such as foetal loss, preterm birth or irreversible brain abnormalities, including microcephaly. So far, there is no effective remedy for ZIKV infection, mainly due to the limited ability of antiviral drugs to cross blood-placental and/or blood-brain barriers (BPB and BBB, respectively). Despite its restricted permeability, the BBB is penetrable by a variety of molecules, mainly peptide-based, and named BBB peptide shuttles (BBBpS), able to ferry various payloads (e.g., drugs, antibodies, etc.) into the brain. Recently, we have described peptide-porphyrin conjugates (PPCs) as successful BBBpS-associated drug leads for HIV, an enveloped virus in which group ZIKV also belongs. Herein, we report on several brain-directed, low-toxicity PPCs capable of targeting ZIKV. One of the conjugates, PP-P1, crossing both BPB and BBB, has shown to be effective against ZIKV (IC50 1.08 µM) and has high serum stability (t1/2 ca. 22 h) without altering cell viability at all tested concentrations. Peptide-porphyrin conjugation stands out as a promising strategy to fill the ZIKV treatment gap.

18.
Biomedicines ; 10(2)2022 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-35203595

RESUMO

Antimicrobial peptides (AMPs) are alternative therapeutics to traditional antibiotics against bacterial resistance. Our previous work identified an antimicrobial region at the N-terminus of the eosinophil cationic protein (ECP). Following structure-based analysis, a 30mer peptide (ECPep-L) was designed that combines antimicrobial action against Gram-negative species with lipopolysaccharides (LPS) binding and endotoxin-neutralization activities. Next, analogues that contain non-natural amino acids were designed to increase serum stability. Here, two analogues were selected for in vivo assays: the all-D version (ECPep-D) and the Arg to Orn version that incorporates a D-amino acid at position 2 (ECPep-2D-Orn). The peptide analogues retained high LPS-binding and anti-endotoxin activities. The peptides efficacy was tested in a murine acute infection model of Acinetobacter baumannii. Results highlighted a survival rate above 70% following a 3-day supervision with a single administration of ECPep-D. Moreover, in both ECPep-D and ECPep-2D-Orn peptide-treated groups, clinical symptoms improved significantly and the tissue infection was reduced to equivalent levels to mice treated with colistin, used as a last resort in the clinics. Moreover, treatment drastically reduced serum levels of TNF-α inflammation marker within the first 8 h. The present results support ECP-derived peptides as alternative candidates for the treatment of acute infections caused by Gram-negative bacteria.

19.
Pharmaceutics ; 14(1)2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35057055

RESUMO

G protein-coupled receptors (GPCRs) are a superfamily of proteins classically described as monomeric transmembrane (TM) receptors. However, increasing evidence indicates that many GPCRs form higher-order assemblies made up of monomers pertaining to identical (homo) or to various (hetero) receptors. The formation and structure of these oligomers, their physiological role and possible therapeutic applications raise a variety of issues that are currently being actively explored. In this context, synthetic peptides derived from TM domains stand out as powerful tools that can be predictably targeted to disrupt GPCR oligomers, especially at the interface level, eventually impairing their action. However, despite such potential, TM-derived, GPCR-disrupting peptides often suffer from inadequate pharmacokinetic properties, such as low bioavailability, a short half-life or rapid clearance, which put into question their therapeutic relevance and promise. In this review, we provide a comprehensive overview of GPCR complexes, with an emphasis on current studies using GPCR-disrupting peptides mimicking TM domains involved in multimerization, and we also highlight recent strategies used to achieve drug-like versions of such TM peptide candidates for therapeutic application.

20.
J Neurotrauma ; 39(9-10): 627-638, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35029125

RESUMO

Two multi-contact epineural electrodes were placed around radial and median nerves of two subjects with high tetraplegia C4, American Spinal Injury Association Impairment Scale (AIS) A, group 0 of the International Classification for Surgery of the Hand in Tetraplegia. The purpose was to study the safety and capability of these electrodes to generate synergistic motor activation and functional movements and to test control interfaces that allow subjects to trigger pre-programmed stimulation sequences. The device consists of a pair of neural cuff electrodes and percutaneous cables with two extracorporeal connection cables inserted during a surgical procedure and maintained for 28 days. Continuity tests of the electrodes, selectivity of movements induced, motor capacities for grasping and gripping, conformity of the control order, tolerance, and acceptability were assessed. Neither of the two participants showed general and local comorbidity. Acceptability was optimal. None of the stimulation configurations generated contradictory movements. The success rate in task execution by the electro-stimulated hand exceeded the target of 50% (54% and 51% for patients 1 and 2, respectively). The compliance rate of the control orders in both patients was >90% using motion inertial measurement unit (IMU)-based detection and 100% using electromyography (EMG)-based detection in patient 1. These results support the relevance of neural stimulation of the tetraplegic upper limb with a more selective approach, using multi-contact epineural electrodes with nine and six contact points for the median and radial nerve respectively.


Assuntos
Terapia por Estimulação Elétrica , Traumatismos da Medula Espinal , Terapia por Estimulação Elétrica/métodos , Eletromiografia , Mãos , Força da Mão/fisiologia , Humanos , Movimento/fisiologia , Quadriplegia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...